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Abstract. Multiple Kernel Learning (MKL) can learn an appropriate
kernel combination from multiple base kernels for classification prob-
lems. It is often used to handle binary problems. However, multi-class
problems appear in many real applications. In this paper, we propose
a novel model, /,-norm multiple kernel learning with diversity of classes
(LMKLDC), for the multi-class multiple kernel learning problem. LMKL-
DC focuses on diversity of classes and aims to learn different kernel com-
binations for different classes to enhance the flexibility of our model.
LMKLDC also utilizes {p-norm (0 < p < 1) to promote the sparsity.
However, LMKLDC boils down to a non-convex optimization problem
when 0 < p < 1. In virtue of the constrained concave convex proce-
dure (CCCP), we convert the non-convex optimization problem into a
convex one and present a two-stage optimization algorithm. Experimen-
tal results on several datasets show our model selects fewer kernels and
improves the classification accuracy.

Keywords: Multiple kernel learning, Multi-class classification, Diver-
sity of classes, lp,-norm.

1 Introduction

So far, Multiple Kernel Learning (MKL) has attracted much attention from the
community of machine learning. MKL helps users to select the most suitable ker-
nel for learning problems at hand. Besides, MKL can deal with one case in which
there are many heterogeneous data sources, especially in bioinformatics. Related
researches include Lanckriet et al. (2004), Bach et al. (2004), Rakotomamonjy
et al. (2008), Kloft et al. (2009), Xu et al. (2010) and Xu et al. (2013).

MKL methods above can be applied to the binary learning problem. However,
we often face multi-class learning problems in the real world. So it is necessary
to design effective MKL algorithms to solve multi-class problems. Such a MKL
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algorithm is called MCMKL. Zien et al. (2007) proposed a model of MCMKL
based on the joint feature maps (Tsochantaridis et al. 2004) and the multi-class
loss function (Crammer et al. 2002). Ye et al. (2008) decomposed a multi-class
problem into multiple binary problems via some kind of coding. Kumar et al.
(2012) converted the classification problem in the original input space into the
binary classification problem in the proposed K-space. Recently, Cortes et al.
(2013) introduced the notion of multi-class kernel margin and constructed the
corresponding MCMKL model. However, most of these MCMKL methods learn
the same weights of combining kernels for all classes. When there exists the di-
versity of classes, doing so seems unreasonable. Especially, as mentioned in (Zien
et al. 2007), if the user is only interested in which kernel can distinguish one class
from the rest, disadvantages of sharing a common feature space for all classes
arise. Hence, it is obvious that learning the same weights for all classes restricts
the flexibility of the model and will decrease its classification performance.

In addition, there are some researchers who are interested in enhancing the
sparsity of MKL models by constraining different norms of the weights of com-
bining kernels. The sparsity can lower the complexity of MKL models to improve
the generalization performance and save the computation cost. In (Lanckriet et
al. 2004), (Bach et al. 2004), (Rakotomamonjy et al. 2008) and (Xu et al. 2013),
they directly or indirectly used the l;-norm (it has a better sparsity than ls-
norm) of the weights. In Bach et al. (2008), the equivalence between group lasso
and MKL is demonstrated. Szafranski et al. (2010) and Nath et al. (2009) com-
bined MKL with the mixed-norm, still using /;-norm to promote the sparsity.
Basically, many MKL methods constrain /;-norm of the weights to improve the
sparsity of models. However, using /,-norm (0 < p < 1) can get a better sparsity
than using {1-norm in plenty of computational studies (Chartrand 2007; Char-
trand et al. 2008; Xu et al. 2012). So it is worth trying combining MKL and
ly-norm (0 < p <1).

In this paper, we expand MKL to multi-class problems and propose a novel
algorithm LMKLDC which considers diversity of classes. LMKLDC learns dif-
ferent weights of combining kernels for different classes to improve the flexibility
of the model. Meanwhile, LMKLDC also utilizes l,-norm (0 < p < 1) to promote
the sparsity, which can reduce the computation cost. However, LMKLDC boils
down to a non-convex optimization problem when 0 < p < 1. Unlike (Rako-
tomamonjy et al. 2011), separately solving optimization problems for p = 1 and
0 < p <1, we present an unified method to solve relevant optimization prob-
lems, no matter what the value of p takes. We apply the two-stage approach
to find the classifier’s parameters and the weights of combining kernels. We uti-
lize the constrained concave convex procedure (CCCP) (Smola et al. 2005) to
transform the non-convex optimization problem into a convex one, which is a
quadratic programming and can be solved by the existing toolbox CVX.

The rest of the paper is organized as follows. In section 2, we discuss the multi-
class kernel-based learning problem. Section 3 presents the proposed LMKLDC.
Section 4 shows the experimental results and conclusions are drawn in Section 5.
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2 Multi-Class Kernel-Based Learning (MCKL)

Given the multi-class data = € X and the labels y € Y = {1,...,m}, m > 2
and (z,y) is from some unknown distribution P over X x Y. According to the
Represent Theorem (Girosi 1998; Scholkopf et al. 2001) as well as the previous
research of (Grammer et al. 2002), the output function for multi-class problems
can be formulated as below,

flz) = (Z crvik:(a:,a:i)> ,r=1,....,m, (1)

where k is a kernel function that is positive definite. Then, the corresponding
decision function is

g(z*) = arngax {Z crik(z”, xz)} , (2)

r=1 i=1
where x* is a new example. That implies that the predicted label for a new

n
example x is the one that gets the largest score > ¢, ;k(z, ;) -

=1
Based on the results above, we can cast the multi-class kernel-based learning
into the following optimization problem,

min Y " 1y (@) (@) + 7 €5 ®)

=1 r=1

where [ is a loss function and f,.(z;) denotes the rth element of f(x;). The
matrix C € R™”" is the parameters of the classifier, which is consisted of (c;..) ,
r=1,.,mand ¢. = (¢ 1,..,¢rn) € R" . 7 is the regularization parameter.
|-l denotes the l>-norm of a matrix. And y,(x;) is 1 if 7 = y; and -1 otherwise.

In the paper, we use the smooth quadratic hinge loss [(z) = max (0,1 — 2)?
so that Eq. (3) is convex. So, we can solve the optimization problem via letting
the derivation about C' of Eq. (3) to be zero to get the stable point, that is the
optimal solution.

3 lp,-norm Multiple Kernel Learning with Diversity of
Classes (LMKLDC)

3.1 Multi-class Multiple Kernel Learning with l,-norm

Now, we can generalize the multi-class kernel-based learning to the multi-class
multiple kernel learning. Unlike the general MKL algorithms which often learn
the same weights of combining kernels for all classes, we take the diversity of
classes into consideration. LMKLDC will learn different weights of combining
kernels for each class. So, we can generalize the output function Eq. (1) to be

f(z) = (Z Cr,z‘Zﬁr,kkk(w,xiO r=1,...,m . (4)
k=1

i=1
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Here B,. = (Br1,.--,Brq) € R? is the weights of ¢ base kernels for the rth
class. As usual, we add the simplex constrain for 3,. , r =1,...,m . That is,

v’l", 67”,- € Al = {B?‘,'

q
Vk:ﬁr,k Zovzﬁr,k :1}

k=1

Correspondingly, the decision function becomes

g(z*) = argnrlriax {Z Cri Z Br ki (", xz)} . (5)
= k=1

=1

Moreover, the regularization term in LMKLDC is in the form of the [,-norm
(0 < p < 1) to promote the sparsity. As a result, the optimization problem of
multi-class multiple kernel learning with [,-norm is

min Y S 1y (@) fr (@) + || Bl , + 7 €113

i=1r=1 (6)
st. Vr:fBy.-e=1,

Vr:Vk: Brr >0,

where B = [B,k],_; a1, € R™7Y, p € (0,1] and o and v are regular-
ization parameters. e € R is a column vector whose elements are 1. [|-[|, , is a
matrix norm defined as (Wang et al. 2013).

Considering diversity of classes, LMKLDC can learn different weights of com-
bining kernels for each class to cater to the feature space of each class. Un-
fortunately, the objective function in Eq. (6) happens to be non-convex when
p € (0,1), which makes it difficult to solve Eq. (6). Hence, it is necessary to
design an efficient algorithm to solve Eq. (6) with p € (0,1] .

3.2 Optimization Method

At first, the objective function of Eq.(6) can be rewritten as

5 (7)

v, sCr,.

S min S 4o @) +ale )+ Al
r=1 i=1

so we can decompose the initial optimization problem Eq.(6) into m small opti-
mization problems as follows,

min S0 e (e fr(2)) + @ 1B I+ lew |
Breser. £
" (®)
st. Br.-e=1,

Vk : B = 0,
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with » = 1,...,m . Substituting the smooth quadratic hinge loss into Eq. (8),
we can get

n

Join ) fmax (0,1~ yr(@i) fr(@i)]* + || |2

i=1

9

st Br.-e=1, ®)
Vk: B x>0 .

So, the key to solving Eq. (6) is to solve the optimization problem Eq. (9). We
apply a two-stage approach to solve the optimization problem Eq. (9). Firstly,
initialize S, ..

Since knowing S, ., we can yield the value for ¢, . by solving Eq. (9). Once
getting ¢,.., By,. can be updated by solving Eq. (9). The process is repeated until
Br,. and ¢, . converge.

Optimize ¢, .. After fixing the vector 5, ., Eq. (9) degenerates to the following
unconstrained optimization problem,

5 (10)

mlng (cr.) = 2 Z [max ( yr(fi)fr($i))]2 + ller

where 2 = ~.

It can be found that the objective function of Eq. (10) is a convex function.
So, we can work out the stable point about c, ., that is just right the optimal
solution.

Firstly, the partial derivative about ¢,.. of g(c,..) can be calculated as

dg(cr..)
9 =, Z?yr (z;) ~cr’. K(xz)ﬁf - Br. ~K(xi)T
Cr,. 'Yl i—1

2 Zer i) Br,. - K(xi)T + 2¢r,..
71 i1

z,x1) ko(x kg
Here, K (z) := ki(x, x2) ko(z,z2) ... kg, x2)

ki(x, xpn) ko(z,2p) ... kq(x, zp)
Then, by letting Eq. (11) to be zero, we can get

n n -1
Cre = B S () K ()" (ZK(wi)ﬁfﬂn-K(%)T+7§In> . (12)
i=1 =1

where I,, denotes unit matrix.
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Optimize (3,.. As above, fixing the vector ¢, . makes Eq. (9) become

1 n
minh(y,) =, Y [max (0,1 =y (xi) fr@)]” + 1611,
. = (13)
st Br.-e=1,
Vk : Bri >0,

where 75 = o and p € (0, 1].

No matter what the value of p takes, we always convert Eq. (13) into a convex
optimization problem via CCCP (Smola et al. 2005). The concrete steps are: (1)
get an initial value xq for f, ., which satisfies the simplex constrain; (2) calculate

the 1th order Taylor expansion Tj {||5,« |§ ,xo} (Br,.) of ||Br,. H; at location zg ,
9|Br,

that is
e ivxo} (Bw) = ||x0||]20 + <6T7' — Zo, o By, =0 >
P (14)

Tl{
= llzoll} + (Br.. = 30,2 7o} - ¥ (w0))

2
.

Here, ¥, (+) is defined as ¥, (x) := (x’f*l, ...,xé’fl) with x € R? . (3) approxi-

mate || Br.. ||127 using its 1th order Taylor expansion.
Now, we substitute Eq. (14) into Eq. (13) and obtain the following optimiza-
tion function

1 n
mlnh(ﬁr = Z max (0,1 — yr(xz)fr(xZ))} + ||x0||
Br, V2 i
+ (Br = 20,2 |oll} " - 8, (a0) ) (15)
s.t. Br.-e=1,
k- 6r,k Z 0.

We can find that Eq. (15) is a QP, which can be solved by the efficient solver.
In the implementation, we use CVX with the solver SeDuMi for QP.

4 Experimental Results

In the section, to evaluate the performance of our proposed model, LMKLDC,
we compare it with the SimpleMKL (Rakotomamonjy et al. 2008) and the un-
weighted MKL for multi-class classification, which corresponds to LMKLDC
with the same weights of combining kernels for every class and for each base
kernel. We perform some experiments on a toy dataset and UCI' datasets. The
detailed experimental setting and analysis of results are presented as below.

! The dataset is available from ‘http://www.ics.uci.edu/mlearn/MLRepository.html’
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4.1 Toy Dataset

In the toy problem, we construct a toy dataset to test the effectiveness of
LMKLDC. The toy dataset has three classes and the data of every class is
respectively from a two-dimensional Gaussian distribution. Every class has 100
examples. The toy dataset is shown in Figure 1. mu and sigma respectively de-
note the average value and the covariance matrix of a Gaussian distribution. We
randomly split the toy dataset into 70% training and 30% test set. And the pro-
cess is repeated ten times. Like SimpleMKL, base kernels include the Gaussian
kernels with the bandwidths {0.5,1,2,5,7,10,12, 15,17, 20} and the polynomial
kernels with the degrees {1,2,3} . The average results of ten splits are reported.

We set the same parameters v, = 277, 72 = 22 and p = 0.5 for our algorithm
and the unweighted MKL. If LMKLDC is effective, it should learn a different
kernel combination for each class and has a better classification performance.
The weights of combining kernels for each class of LMKLDC are presented in
Figure 2. From the figure, we can find our algorithm does select a few different
base kernels for each class. Class 2 and Class 3 select the similar base kernels,
but the weights of these base kernels are different. Compared with Class 2 and
Class 3, Class 1 selects entirely different base kernels. Besides, we compare our
algorithm with the unweighted MKL about the classification accuracy. The result
is reported in Table 1. We can find that LMKLDC gets a better classification
accuracy. It implies that when the weights of combining kernels for all classes are
restricted to be the same, the classification performance of MCMKL algorithms
is decreased. Hence, considering diversity of classes in MCMKL algorithms is
necessary.

14 T 0.4 T
Gaust: mut=[2 5], sigma1=[0.75 0; 0 10] =
2 ®  Gaus2: mu2=[-7 0], sigma2=[20 0; 01] g 02
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r L in
o, o % 5 10 15 20 25 30 35 40
8 g ¢ . 1 1 T T T T
° At - ] : (2]
:
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4 . o e J H ].
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Fig. 1. Toy dataset Fig.2. The weights of combining kernels

for each class of LMKLDC. The x-axis de-
notes the base kernels.

4.2 UCI Dataset

In the subsection, we perform a serial of experiments to evaluate the perfor-
mance of the LMKLDC algorithm. Eight UCI datasets are used in our experi-
ments. They include Balance (3,4,625), Iris (3,4,150), Soybean (4,35,47), Lenses
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Table 1. Accuracy of two algorithms on the toy dataset

Dataset LMKLDC Unweighted MKL
toy dataset 0.9833 0.9778

(8,4,24), Wine (3,13,178), Tae (3,5,151), Ecoli (6,6,332) and Cmc(3,9,1473),
where the number of classes, the dimension and number of samples are listed in
the bracket. Likewise, for every dataset, we randomly split it into 70% training
and 30% test set. And the process is repeated ten times. The regularization pa-
rameters 1 and o are tuned via grid searching in the set {2*10, 279,29, 210}
and p in the set {0.25,0.5,0.75, 1}. Similarly, we select the Gaussian kernels with
the bandwidths {0.5,1,2,5,7,10,12,15,17,20} and the polynomial kernels with
the degrees {1, 2, 3} as base kernels. The average results of ten splits are reported

in the experiments.
I SimpleMKL N
[ JUnweighted MKL | |
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Fig. 3. Classification accuracy of algorithms on UCI datasets

For every dataset, we report the average classification accuracies of these
compared algorithms in Figure 3. From the figure, it can be seen that our al-
gorithm gets a better classification accuracy on most of datasets. Though the
accuracy of SimpleMKL is higher than the accuracy of LMKLDC in Wine and
Tae, LMKLDC selects fewer base kernels than SimpleMKL. And in Tae, the un-
weighted MKL, which is a special case of LMKLDC, gets the highest accuracy.
In a sense, that also shows the superior classification performance of LMKLDC.

Moreover, we also perform an experiment to examine the sparsity of our
model, which is measured by the number of kernels selected from base kernels.
Considering our model learns different kernel combinations for each class, we
use the average number of selected kernels of all classes as the final number of
selected kernels for our model. The corresponding result is presented in Table 2.
Kernels whose weight is greater than 0.0001 are selected. It is obvious that our
model selects the less number of kernels from the base kernels than SimpleMKL.
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It indicates the superiority of /,-norm (0 < p < 1). Especially in Balance, Iris,
Soybean, Wine and Cmc, the sparsity of LMKLDC makes it select far fewer
base kernels than SimpleMKL. Hence, our algorithm LMKLDC can get a better
classification accuracy and the sparsity simultaneously.

Table 2. The percentage of selected kernels from base kernels

Dataset SimpleMKL LMKLDC
Balance 7.69% (5/65) 2.56% (1.667/65)
Iris 7.69% (5/65) 1.54% (1/65)
Soybean 39.87% (181/454) 0.39% (1.75/454)
Lenses 4.62% (3/65) 4.10% (2.667/65)
Wine 10.43% (19/182) 1.10% (2/182)
Tae 6.41% (5/78) 5.13% (4/78)
Ecoli 10.99% (10/91) 4.76% (4.333/91)
Cme 60.00% (78/130) 1.54% (2/130)

5 Conclusion

In this paper, we combine MKL with the multi-class classification and propose an
effective algorithm LMKLDC. It considers the diversity of classes and utilizes
the sparsity of {,-norm (0 < p < 1) to promote the computational efficiency.
Some experiments demonstrate its superiority.

In the paper, LMKLDC employs positive definite kernels as base kernels.
How to expand LMKLDC with indefinite kernels as base kernels becomes an
interesting issue for future work.
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